Skip to main content

Variância do modelo médio móvel automotivo


ARMA Unplugged Esta é a primeira entrada da nossa série de tutoriais Unplugged, nos quais investigamos os detalhes de cada um dos modelos de séries temporais com os quais você já está familiarizado, destacando os pressupostos subjacentes e dirigindo para casa as intuições por trás deles. Nesta edição, nós abordamos o modelo ARMA uma pedra angular na modelagem de séries temporais. Ao contrário de questões de análise anteriores, vamos começar aqui com a definição do processo ARMA, o estado das entradas, saídas, parâmetros, restrições de estabilidade, suposições e, finalmente, desenhar algumas orientações para o processo de modelagem. Por definição, a média móvel auto-regressiva (ARMA) é um processo estacionário estacionário composto por somas de Excel auto-regressivo e componentes de média móvel. Alternativamente, em uma formulação simples: Suposições Vamos olhar mais de perto a formulação. O processo ARMA é simplesmente uma soma ponderada das observações de saída anteriores e choques, com poucas suposições fundamentais: O que significam estas suposições? Um processo estocástico é uma contrapartida de um processo determinista que descreve a evolução de uma variável aleatória ao longo do tempo. Em nosso caso, a variável aleatória é O processo ARMA captura apenas a correlação serial (ou seja, auto-correlação) entre as observações. Em palavras simples, o processo ARMA resume os valores de observações passadas, não seus valores quadrados ou seus logaritmos, etc. Dependência de ordem superior exige um processo diferente (por exemplo, ARCHGARCH, modelos não-lineares, etc.). Existem inúmeros exemplos de um processo estocástico em que valores passados ​​afetam os atuais. Por exemplo, em um escritório de vendas que recebe RFQs em uma base contínua, alguns são percebidos como vendas-ganhou, alguns como vendas perdidas, e alguns derramou em cima para o próximo mês. Como resultado, em qualquer mês, alguns dos casos de vendas ganhos originam-se como solicitações de cotação ou são vendas repetidas dos meses anteriores. Quais são os choques, inovações ou termos de erro Esta questão é difícil, ea resposta não é menos confusa. Ainda assim, vamos tentar: Em palavras simples, o termo de erro em um determinado modelo é um catch-all bucket para todas as variações que o modelo não explica. Ainda perdido Vamos usar um exemplo. Para um processo de preço de ações, há possivelmente centenas de fatores que levam o nível de preço atualizado, incluindo: Dividendos e anúncios divididos Relatórios de ganhos trimestrais Atividades de fusão e aquisição (MampA) Eventos jurídicos, p. A ameaça de ações coletivas. Outros Um modelo, por design, é uma simplificação de uma realidade complexa, então qualquer coisa que deixemos fora do modelo é automaticamente empacotada no termo de erro. O processo ARMA assume que o efeito coletivo de todos esses fatores age mais ou menos como ruído gaussiano. Por que nos preocupamos com os choques passados ​​Ao contrário de um modelo de regressão, a ocorrência de um estímulo (por exemplo, choque) pode ter um efeito no nível atual e, possivelmente, nos níveis futuros. Por exemplo, um evento corporativo (por exemplo, atividade da MampA) afeta o preço das ações da empresa, mas a mudança pode levar algum tempo para ter seu impacto total, já que os participantes do mercado absorvem as informações disponíveis e reagem de acordo. Isso implora a pergunta: não os valores passados ​​da saída já têm os choques informações passadas SIM, o histórico de choques já está contabilizado nos níveis de saída passados. Um modelo ARMA pode ser representado apenas como um modelo auto-regressivo puro (RA), mas o requisito de armazenamento de tal sistema em infinito. Esta é a única razão para incluir o componente MA: para economizar em armazenamento e simplificar a formulação. Novamente, o processo ARMA deve ser estacionário para que a variância marginal (incondicional) exista. Nota: Na minha discussão acima, não estou fazendo uma distinção entre meramente a ausência de uma raiz unitária na equação característica e a estacionaridade do processo. Eles estão relacionados, mas a ausência de uma raiz unitária não é uma garantia de estacionaridade. Ainda assim, a raiz unitária deve estar dentro do círculo da unidade para ser exata. Conclusão Vamos recapitular o que fizemos até agora. Primeiro examinamos um processo ARMA estacionário, juntamente com sua formulação, insumos, suposições e requisitos de armazenamento. Em seguida, mostrou que um processo ARMA incorpora seus valores de saída (auto-correlação) e choques que experimentou anteriormente na saída atual. Finalmente, mostramos que o processo ARMA estacionário produz uma série temporal com uma média e uma variância estáveis ​​a longo prazo. Em nossa análise de dados, antes de propormos um modelo ARMA, devemos verificar a suposição de estacionaridade e os requisitos de memória finita. No caso de a série de dados exibir uma tendência determinística, precisamos remover (des-tendência) em primeiro lugar e, em seguida, usar os resíduos para ARMA. Caso o conjunto de dados exiba uma tendência estocástica (por exemplo, caminhada aleatória) ou sazonalidade, precisamos entreter ARIMASARIMA. Finalmente, o correlograma (isto é, ACFPACF) pode ser usado para medir a necessidade de memória do modelo, devemos esperar que ACF ou PACF se decomponham rapidamente após alguns desfasamentos. Se não, isso pode ser um sinal de não-estacionaridade ou um padrão de longo prazo (por exemplo, ARFIMA). Um RIMA significa Autoregressive Integrated Moving Average. Univariada (vetor único) ARIMA é uma técnica de previsão que projeta os valores futuros de uma série baseada inteiramente em sua própria inércia. Sua principal aplicação é na área de previsão de curto prazo, exigindo pelo menos 40 pontos de dados históricos. Ele funciona melhor quando seus dados exibem um padrão estável ou consistente ao longo do tempo com uma quantidade mínima de outliers. Às vezes chamado Box-Jenkins (após os autores originais), ARIMA é geralmente superior a técnicas de suavização exponencial quando os dados são razoavelmente longos ea correlação entre as observações passadas é estável. Se os dados são curtos ou altamente voláteis, então algum método de suavização pode funcionar melhor. Se você não tiver pelo menos 38 pontos de dados, você deve considerar algum outro método que ARIMA. O primeiro passo na aplicação da metodologia ARIMA é verificar a estacionaridade. Estacionariedade implica que a série permanece a um nível bastante constante ao longo do tempo. Se houver uma tendência, como na maioria das aplicações econômicas ou de negócios, os dados NÃO são estacionários. Os dados também devem mostrar uma variação constante em suas flutuações ao longo do tempo. Isso é facilmente visto com uma série que é fortemente sazonal e crescendo a um ritmo mais rápido. Nesse caso, os altos e baixos da sazonalidade se tornarão mais dramáticos ao longo do tempo. Sem que estas condições de estacionaridade sejam satisfeitas, muitos dos cálculos associados ao processo não podem ser calculados. Se um gráfico gráfico dos dados indica nonstationarity, então você deve diferenciar a série. A diferenciação é uma excelente maneira de transformar uma série não-estacionária em uma estacionária. Isto é feito subtraindo a observação no período atual do anterior. Se essa transformação é feita apenas uma vez para uma série, você diz que os dados foram primeiro diferenciados. Este processo elimina essencialmente a tendência se sua série está crescendo em uma taxa razoavelmente constante. Se ele está crescendo a uma taxa crescente, você pode aplicar o mesmo procedimento e diferença os dados novamente. Seus dados seriam então segundo diferenciados. Autocorrelações são valores numéricos que indicam como uma série de dados está relacionada a si mesma ao longo do tempo. Mais precisamente, ele mede quão fortemente os valores de dados em um número específico de períodos separados estão correlacionados entre si ao longo do tempo. O número de períodos separados é geralmente chamado de lag. Por exemplo, uma autocorrelação no intervalo 1 mede como os valores 1 intervalo de tempo são correlacionados um ao outro ao longo da série. Uma autocorrelação no intervalo 2 mede como os dados dois períodos separados estão correlacionados ao longo da série. As autocorrelações podem variar de 1 a -1. Um valor próximo a 1 indica uma alta correlação positiva, enquanto um valor próximo a -1 implica uma correlação negativa elevada. Essas medidas são mais frequentemente avaliadas através de gráficos gráficos chamados correlagramas. Um correlagram traça os valores de auto-correlação para uma dada série em diferentes defasagens. Isto é referido como a função de autocorrelação e é muito importante no método ARIMA. A metodologia ARIMA tenta descrever os movimentos em séries temporais estacionárias em função dos parâmetros chamados auto-regressivos e de média móvel. Estes são referidos como parâmetros AR (autoregessive) e MA (médias móveis). Um modelo AR com apenas um parâmetro pode ser escrito como. X (t) A (1) X (t-1) E (t) onde X (t) séries temporais sob investigação A (1) o parâmetro autorregressivo de ordem 1 X (t-1) (T) o termo de erro do modelo Isto simplesmente significa que qualquer valor dado X (t) pode ser explicado por alguma função de seu valor anterior, X (t-1), mais algum erro aleatório inexplicável, E (t). Se o valor estimado de A (1) fosse .30, então o valor atual da série estaria relacionado a 30 de seu valor 1 período atrás. Naturalmente, a série poderia estar relacionada a mais do que apenas um valor passado. Por exemplo, X (t) A (1) X (t-1) A (2) X (t-2) E (t) Isso indica que o valor atual da série é uma combinação dos dois valores imediatamente anteriores, X (t-1) e X (t-2), mais algum erro aleatório E (t). Nosso modelo é agora um modelo autorregressivo de ordem 2. Modelos de média móvel: Um segundo tipo de modelo Box-Jenkins é chamado de modelo de média móvel. Embora esses modelos parecem muito semelhantes ao modelo AR, o conceito por trás deles é bastante diferente. Os parâmetros de média móvel relacionam o que acontece no período t apenas aos erros aleatórios que ocorreram em períodos de tempo passados, isto é, E (t-1), E (t-2), etc., em vez de X (t-1), X T-2), (Xt-3) como nas abordagens autorregressivas. Um modelo de média móvel com um termo MA pode ser escrito da seguinte forma. O termo B (1) é chamado de MA de ordem 1. O sinal negativo na frente do parâmetro é usado apenas para convenção e normalmente é impresso Automaticamente pela maioria dos programas de computador. O modelo acima diz simplesmente que qualquer valor dado de X (t) está diretamente relacionado apenas ao erro aleatório no período anterior, E (t-1) e ao termo de erro atual, E (t). Como no caso de modelos autorregressivos, os modelos de média móvel podem ser estendidos a estruturas de ordem superior cobrindo diferentes combinações e comprimentos médios móveis. A metodologia ARIMA também permite a construção de modelos que incorporem parâmetros de média móvel e autorregressiva. Estes modelos são muitas vezes referidos como modelos mistos. Embora isso torne uma ferramenta de previsão mais complicada, a estrutura pode de fato simular melhor a série e produzir uma previsão mais precisa. Modelos puros implicam que a estrutura consiste apenas de AR ou MA parâmetros - não ambos. Os modelos desenvolvidos por esta abordagem são geralmente chamados de modelos ARIMA porque eles usam uma combinação de auto-regressão (AR), integração (I) - referindo-se ao processo inverso de diferenciação para produzir as operações de previsão e média móvel (MA). Um modelo ARIMA é normalmente indicado como ARIMA (p, d, q). Isso representa a ordem dos componentes autorregressivos (p), o número de operadores de diferenciação (d) e a ordem mais alta do termo médio móvel. Por exemplo, ARIMA (2,1,1) significa que você tem um modelo autorregressivo de segunda ordem com um componente de média móvel de primeira ordem cuja série foi diferenciada uma vez para induzir a estacionaridade. Escolhendo a especificação certa: O principal problema no clássico Box-Jenkins está tentando decidir qual especificação ARIMA usar-i. e. Quantos parâmetros AR e / ou MA devem ser incluídos. Isto é o que muito de Box-Jenkings 1976 foi dedicado ao processo de identificação. Ela dependia da avaliação gráfica e numérica das funções de autocorrelação da amostra e autocorrelação parcial. Bem, para os seus modelos básicos, a tarefa não é muito difícil. Cada um tem funções de autocorrelação que parecem uma certa maneira. No entanto, quando você subir em complexidade, os padrões não são tão facilmente detectados. Para tornar as questões mais difíceis, seus dados representam apenas uma amostra do processo subjacente. Isto significa que os erros de amostragem (outliers, erros de medição, etc.) podem distorcer o processo de identificação teórica. É por isso que a modelagem ARIMA tradicional é mais uma arte do que uma ciência.2.1 Modelos de média móvel (modelos MA) Modelos de séries temporais conhecidos como modelos ARIMA podem incluir termos autorregressivos ou termos de média móvel. Na Semana 1, aprendemos um termo autorregressivo em um modelo de séries temporais para a variável x t é um valor retardado de x t. Por exemplo, um termo autorregressivo de atraso 1 é x t-1 (multiplicado por um coeficiente). Esta lição define termos de média móvel. Um termo de média móvel em um modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Vamos (wt desviar N (0, sigma2w)), significando que os w t são identicamente, distribuídos independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel da 1ª ordem, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) , Denotado por MA (q) é (xt mu wt theta1w theta2w pontos thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele inverta os sinais algébricos de valores de coeficientes estimados e de termos (não-quadrados) nas fórmulas para ACFs e variâncias. Você precisa verificar seu software para verificar se sinais negativos ou positivos foram usados ​​para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades Teóricas de uma Série de Tempo com um Modelo MA (1) Observe que o único valor não nulo na ACF teórica é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma ACF de amostra com uma autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para os estudantes interessados, provas destas propriedades são um apêndice a este folheto. Exemplo 1 Suponha que um modelo MA (1) seja x t 10 w t .7 w t-1. Onde (wt overset N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por Um gráfico deste ACF segue. O gráfico apenas mostrado é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra normalmente não proporciona um padrão tão claro. Usando R, simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se um gráfico de séries temporais dos dados da amostra. Não podemos dizer muito desse enredo. A ACF de amostra para os dados simulados segue. Observamos que a amostra ACF não corresponde ao padrão teórico do MA subjacente (1), ou seja, que todas as autocorrelações para os atrasos de 1 serão 0 Uma amostra diferente teria uma ACF de amostra ligeiramente diferente mostrada abaixo, mas provavelmente teria as mesmas características gerais. Propriedades teóricas de uma série temporal com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Note que os únicos valores não nulos na ACF teórica são para os retornos 1 e 2. As autocorrelações para atrasos maiores são 0 . Assim, uma ACF de amostra com autocorrelações significativas nos intervalos 1 e 2, mas autocorrelações não significativas para atrasos maiores indica um possível modelo MA (2). Iid N (0,1). Os coeficientes são 1 0,5 e 2 0,3. Como este é um MA (2), o ACF teórico terá valores não nulos apenas nos intervalos 1 e 2. Os valores das duas autocorrelações não nulas são: Um gráfico do ACF teórico segue. Como quase sempre é o caso, dados de exemplo não vai se comportar tão perfeitamente como a teoria. Foram simulados n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Onde w t iid N (0,1). O gráfico de série de tempo dos dados segue. Como com o gráfico de série de tempo para os dados de amostra de MA (1), você não pode dizer muito dele. A ACF de amostra para os dados simulados segue. O padrão é típico para situações em que um modelo MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos intervalos 1 e 2, seguidos por valores não significativos para outros desfasamentos. Note que devido ao erro de amostragem, a ACF da amostra não corresponde exactamente ao padrão teórico. ACF para Modelos Gerais MA (q) Uma propriedade dos modelos MA (q) em geral é que existem autocorrelações não nulas para os primeiros q lags e autocorrelações 0 para todos os retornos gt q. Não-unicidade de conexão entre os valores de 1 e (rho1) no modelo MA (1). No modelo MA (1), para qualquer valor de 1. O recíproco 1 1 dá o mesmo valor para Como exemplo, use 0,5 para 1. E então use 1 (0,5) 2 para 1. Você obterá (rho1) 0,4 em ambas as instâncias. Para satisfazer uma restrição teórica chamada invertibilidade. Restringimos modelos MA (1) para ter valores com valor absoluto menor que 1. No exemplo dado, 1 0,5 será um valor de parâmetro permitido, enquanto 1 10,5 2 não. Invertibilidade de modelos MA Um modelo MA é dito ser inversível se for algébrica equivalente a um modelo de ordem infinita convergente. Por convergência, queremos dizer que os coeficientes de RA diminuem para 0 à medida que avançamos no tempo. Invertibilidade é uma restrição programada em séries temporais de software utilizado para estimar os coeficientes de modelos com MA termos. Não é algo que verificamos na análise de dados. Informações adicionais sobre a restrição de invertibilidade para modelos MA (1) são fornecidas no apêndice. Teoria Avançada Nota. Para um modelo MA (q) com um ACF especificado, existe apenas um modelo invertible. A condição necessária para a invertibilidade é que os coeficientes têm valores tais que a equação 1- 1 y-. - q y q 0 tem soluções para y que caem fora do círculo unitário. Código R para os Exemplos No Exemplo 1, traçamos o ACF teórico do modelo x t 10w t. 7w t-1. E depois simularam n 150 valores a partir deste modelo e traçaram a amostra de séries temporais ea amostra ACF para os dados simulados. Os comandos R utilizados para traçar o ACF teórico foram: acfma1ARMAacf (mac (0.7), lag. max10) 10 lags de ACF para MA (1) com theta1 0.7 lags0: 10 cria uma variável chamada lags que varia de 0 a 10. plot (Lags, acfma1, xlimc (1,10), ylabr, typeh, ACF principal para MA (1) com theta1 0,7) abline (h0) adiciona um eixo horizontal ao gráfico O primeiro comando determina o ACF e o armazena em um objeto Chamado acfma1 (nossa escolha de nome). O comando de plotagem (o terceiro comando) traça defasagens em relação aos valores de ACF para os retornos 1 a 10. O parâmetro ylab rotula o eixo y eo parâmetro principal coloca um título no gráfico. Para ver os valores numéricos do ACF basta usar o comando acfma1. A simulação e as parcelas foram feitas com os seguintes comandos. Xcarima. sim (n150, lista (mac (0.7))) Simula n 150 valores de MA (1) xxc10 adiciona 10 para fazer a média 10. Padrões de simulação significam 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF para dados de amostras simulados) No Exemplo 2, traçamos o ACF teórico do modelo xt 10 wt. 5 w t-1 .3 w t-2. E depois simularam n 150 valores a partir deste modelo e traçaram a amostra de séries temporais ea amostra ACF para os dados simulados. Os comandos R utilizados foram acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 parcela (lags, acfma2, xlimc (1,10), ylabr, tipoh, ACF principal para MA (2) com theta1 0,5, (X, typeb, main Simulado MA (2) Series) acf (x, xlimc (1,10), x2, MainACF para dados simulados de MA (2) Apêndice: Prova de Propriedades de MA (1) Para estudantes interessados, aqui estão as provas para propriedades teóricas do modelo MA (1). Quando h 1, a expressão anterior 1 w 2. Para qualquer h 2, a expressão anterior 0 (x) é a expressão anterior x (x) A razão é que, por definição de independência do wt. E (w k w j) 0 para qualquer k j. Além disso, porque w t tem média 0, E (w j w j) E (w j 2) w 2. Para uma série de tempo, aplique este resultado para obter o ACF fornecido acima. Um modelo MA reversível é aquele que pode ser escrito como um modelo de ordem infinita AR que converge de modo que os coeficientes AR convergem para 0 à medida que nos movemos infinitamente para trás no tempo. Bem demonstrar invertibilidade para o modelo MA (1). Substitui-se então a relação (2) para wt-1 na equação (1) (3) (zt wt theta1 (z-theta1w) wt theta1z-theta2w) No tempo t-2. A equação (2) torna-se Então substituimos a relação (4) para wt-2 na equação (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z-theta12z theta31w) Se continuássemos Infinitamente), obteríamos o modelo AR de ordem infinita (zt wt theta1 z - theta21z theta31z - theta41z pontos) Observe, no entanto, que se 1 1, os coeficientes multiplicando os desfasamentos de z aumentarão (infinitamente) Tempo. Para evitar isso, precisamos de 1 lt1. Esta é a condição para um modelo MA (1) invertible. Infinite Order MA model Na semana 3, bem ver que um modelo AR (1) pode ser convertido em um modelo de ordem infinita MA: (xt - mu wt phi1w phi21w pontos phik1 w dots sum phij1w) Esta soma de termos de ruído branco passado é conhecido Como a representação causal de um AR (1). Em outras palavras, x t é um tipo especial de MA com um número infinito de termos voltando no tempo. Isso é chamado de ordem infinita MA ou MA (). Uma ordem finita MA é uma ordem infinita AR e qualquer ordem finita AR é uma ordem infinita MA. Lembre-se na Semana 1, observamos que um requisito para um AR estacionário (1) é que 1 lt1. Vamos calcular o Var (x t) usando a representação causal. Esta última etapa usa um fato básico sobre séries geométricas que requer (phi1lt1) caso contrário, a série diverge. Navegação8.3 Modelos auto-regressivos Em um modelo de regressão múltipla, projetamos a variável de interesse usando uma combinação linear de preditores. Em um modelo de autorregressão, projetamos a variável de interesse usando uma combinação linear de valores passados ​​da variável. O termo regressão automática indica que é uma regressão da variável contra si mesma. Assim, um modelo autorregressivo de ordem p pode ser escrito como onde c é uma constante e et é ruído branco. Isto é como uma regressão múltipla, mas com valores defasados ​​de yt como preditores. Referimo-nos a isto como um modelo AR (p). Modelos auto-regressivos são notavelmente flexíveis no manuseio de uma ampla gama de diferentes padrões de séries temporais. As duas séries na Figura 8.5 mostram séries de um modelo AR (1) e um modelo AR (2). Alterando os parâmetros phi1, dots, phip resulta em diferentes padrões de séries temporais. A variância do termo de erro e só mudará a escala da série, não os padrões. Figura 8.5: Dois exemplos de dados de modelos autorregressivos com diferentes parâmetros. Esquerda: AR (1) com yt 18 -0,8y et. Direita: AR (2) com yt 8 ​​1,3y -0,7y et. Em ambos os casos, et é normalmente distribuído ruído branco com média zero e variância um. Para um modelo AR (1): Quando phi10, yt é equivalente a ruído branco. Quando phi11 e c0, yt é equivalente a uma caminhada aleatória. Quando phi11 e cne0, yt é equivalente a uma caminhada aleatória com drift Quando ph1lt0, yt tende a oscilar entre valores positivos e negativos. Normalmente, restringimos modelos autorregressivos a dados estacionários e, em seguida, algumas restrições sobre os valores dos parâmetros são necessárias. Para um modelo AR (1): -1 lt phi1 lt 1. Para um modelo AR (2): -1 lt phi2 lt 1, phi1phi2 lt 1, phi2-phi1 lt 1. Quando pge3 as restrições são muito mais complicadas. R cuida dessas restrições ao estimar um modelo.

Comments

Popular posts from this blog

Unified trading system definition

O setor de negócios de grande porte. BT Unified Trading. Enabling comunicação, colaboração e compliance. For mais de 30 anos BT tem vindo a fornecer comunicações de missão crítica para o pregão Nosso premiado BT Netrix foi na vanguarda das comunicações de voz para mais de uma década e Nestas rápidas mudanças, a BT reconhece que as organizações necessitam de soluções mais flexíveis e rentáveis ​​que lhes permitam entrar e sair mais rapidamente dos mercados, permitindo-lhes gerir os riscos e cumprir mais eficazmente a regulamentação, permitindo-lhes focar os seus clientes , Oferecendo serviços diferenciados para vantagem competitiva. Nós acreditamos muito fortemente que a maneira de fazer isso é fornecer serviços inteligentes dentro de uma rede global de serviços financeiros que conecta os participantes nos mercados e fornece a base tecnológica para as aplicações e serviços que eles usam para interagir E fazer business. BT Unified Trading permite que as pessoas nos mercados Para interagi

Sites to trade binário opções

Um guia para a negociação de opções binárias nas opções U. Binary S. são baseadas em uma simples sim ou não proposição Será que um ativo subjacente ser acima de um determinado preço em um determinado momento Traders colocar negócios com base em se eles acreditam que a resposta é sim ou não, Tornando-se um dos ativos financeiros mais simples para o comércio Esta simplicidade resultou em grande apelo entre os comerciantes e recém-chegados para os mercados financeiros Tão simples como pode parecer, os comerciantes devem compreender plenamente como binário opções de trabalho, o que mercados e prazos eles podem negociar com Opções binárias, vantagens e desvantagens destes produtos, e quais as empresas estão legalmente autorizadas a fornecer opções binárias para residentes dos EUA. Opções binárias negociadas fora dos EUA são normalmente estruturados de forma diferente dos binários disponíveis em bolsas dos EUA Ao considerar especular ou hedging opções binárias são uma alternativa , Mas somen

Worlds best forex trading system

Esses são os mais famosos Forex Traders Ever. A maioria dos comerciantes de moeda evitar o centro das atenções, tranquilamente construção de lucros, mas um seleto poucos subiram ao estrelato internacional Estes jogadores bem conhecidos quebraram o molde, publicando resultados incríveis durante longas carreiras Eles re pessoas de influência Que tiveram um profundo impacto sobre a indústria. Estes indivíduos oferecem uma luz orientadora para os comerciantes de forex no início de sua carreira, bem como jornaleiros que procuram melhorar os seus resultados finais Leia mais sobre o tópico, aqui Cinco maiores obstáculos enfrentando primeiro Estes comerciantes têm liderado pelo exemplo, tomando riscos meticulosamente calculados Alguns são surpreendentemente humilde, enquanto outros ostentam seu sucesso, mas todos esses comerciantes bem sucedidos compartilham um sentimento inabalável de confiança, que orienta o seu desempenho financeiro. George Soros. George Soros foi Nascido em 1930 Soros come